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We study the dynamic properties of a model for wetting with two competing adsorbates on a planar
substrate. The two species of particles have identical properties and repel each other. Starting with a flat
interface one observes the formation of homogeneous droplets of the respective type separated by nonwet
regions where the interface remains pinned. The wet phase is characterized by slow coarsening of competing
droplets. Moreover, in 2+1 dimensions an additional line of continuous phase transition emerges in the bound
phase, which separates an unordered phase from an ordered one. The symmetry under interchange of the
particle types is spontaneously broken in this region and finite systems exhibit two metastable states, each
dominated by one of the species. The critical properties of this transition are analyzed by numeric simulations.

DOI: 10.1103/PhysRevE.79.041111 PACS number�s�: 05.70.Ln, 61.30.Hn, 68.08.Bc

I. INTRODUCTION

Wetting phenomena are observed in a large variety of
situations where an inert surface is exposed to a bulk phase
such as a gas or a liquid. Depending on external parameters
like chemical potential and temperature, the internal forces
between the particles and the solid may lead to the formation
of a thin layer of a different thermodynamical phase, a so-
called wetting layer �1�. The morphology and the thickness
of the layer depends on how the free-energy contributions at
the interfaces between the solid, wetting layer and the bulk
phase balance one another. If the bulk phase is thermody-
namically favorable the wetting layer remains bound to the
surface and is characterized by microscopically finite aver-
age width. However, approaching the point where the gas
phase and the wetting layer coexist in the bulk, the system
undergoes a wetting transition. Beyond this transition the wet
phase becomes more favorable in the bulk so that the layer
grows, eventually reaching a macroscopic size.

The phase diagram of a system with wetting layers could
be rather complex exhibiting a variety of surface phase tran-
sitions, prewetting phenomena, and multicritical behavior
�2,3�. For example, if the temperature is varied while moving
along the coexistence curve of wetting layer and bulk phase,
a transition may take place at a temperature TW beyond
which the thickness of the layer becomes infinite. This tran-
sition, known as continuous wetting, is usually first order,
although in certain models the transition is continuous. On
the other hand, varying the chemical potential difference be-
tween the two phases and moving towards the coexistence
curve at T�TW, a different type of transition takes place,
which is referred to as complete wetting.

In many situations it is reasonable to assume that a statis-
tically stationary layer is in thermal equilibrium with its en-
vironment. In the 1980s many authors studied such wetting
transitions experimentally and theoretically within the frame-
work of equilibrium statistical mechanics �for a review, see
�2��. Within this approach, a wetting transition is usually
modeled as the unbinding of an interface from a wall. The
interface configuration is described by a height function h�x�
above the point x on the substrate. The model is then defined
in terms of an effective energy functional �4�,

E =� ddx��

2
��h�2 + V„h�x�…� , �1�

where � is the effective surface tension of the interface, V�h�
is a potential accounting for the interaction between the wall
and the interface, and d is the interface dimension �usually
d=2�. In the nonwet phase the potential V contains an attrac-
tive component which binds the interface to the wall. Assum-
ing thermal equilibrium, the probability of finding the inter-
face in a certain configuration is then given by the canonical
distribution

P�h� � exp�− �E�h�� . �2�

As the parameters describing the system are varied, the at-
tractive component of the potential may become weaker so
that it is no longer able to bind the interface, leading to a
wetting transition.

If one is interested not only in static properties but also in
time-dependent features such as dynamical roughening, one
usually introduces a stochastic Langevin equation that repro-
duces the equilibrium distribution �2� in the limit t→�. As-
suming short-range interactions and keeping only the most
relevant terms in the renormalization group sense, one is led
to the Edwards-Wilkinson equation with a potential �5�

�h�x,t�
�t

= ��2h�x,t� −
�V„h�x,t�…

�h�x,t�
+ ��x,t� , �3�

where ��x , t� is a zero-average Gaussian noise field with a
variance
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FIG. 1. �Color online� Sketch of a wetting process with compet-
ing adsorbates: Two types of particles A and B, which strongly
repell each other, are adsorbed on top of an inert substrate, forming
a wetting layer of mutually avoiding droplets.
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	��x,t���x�,t��
 = 2��d−1�x − x����t − t�� , �4�

and a noise amplitude �=kBT.
In contrast to the canonical ensemble, the definition of the

model as a dynamical process allows one to go beyond the
realm of equilibrium thermodynamics and to study the influ-
ence of nonequilibrium effects, which manifest themselves
as a violation of detailed balance. In fact, during the past
decade the study of wetting transitions far from equilibrium
emerged as a new subtopic of the field �6–14�. In these the-
oretical studies it was shown that nonequilibrium wetting
transitions may differ significantly from their equilibrium
counterparts, exhibiting, e.g., different types of critical be-
havior and new macroscopically observable physical phe-
nomena.

In the present work we investigate what happens if the
surface is exposed to a gas consisting of two different types
of particles, say A and B. Similar situations, but with a focus
on catalytic processes, were investigated recently in �15�.
The two species of particles are assumed to repel each other
strongly, leading to the formation of competing droplets of
either type, as sketched in Fig. 1. In our model the repelling
force is implemented as a dynamical constraint that deposi-
tion is prohibited if it were to cause a direct contact between
an A and a B particle. Moreover, the two types of particles
are assumed to have identical physical properties, establish-
ing a A↔B symmetry in the model. Certainly it is difficult if
not impossible to realize these assumptions experimentally.
However, here we are primarily interested in the theoretical
question of how such a symmetry influences the universal
critical behavior of wetting transitions. For simplicity the
present work is restricted to the case of detailed balance,
where methods of equilibrium statistical mechanics can be
applied. However, the generalization to the nonequilibrium
case is straightforward.

The main results of this paper are the following:
�i� The competition of A and B islands slows down the

dynamics significantly, particularly in the unbound phase,
where an extremely slow coarsening process is observed.

�ii� In the case of a one-dimensional substrate the phase
structure is the same as in the single-species case.

�iii� In two �and higher� dimensions an additional transi-
tion line divides the bound phase into two parts.

�iv� For a growth rate q=0 this additional transition is
found to belong to the same universality class as the kinetic
Ising model. For q=1 one observes an unusual type of tran-
sition.

II. DEFINITION OF THE MODEL

A. Single-species model

Before introducing the two-species model let us briefly
recall the single-species model introduced in �6�. The single-
species model is defined as a solid-on-solid growth process
on a flat substrate represented by a d-dimensional hypercubic
lattice with N=Ld sites. The configuration of the wetting
layer is described by an interface without overhangs, mean-
ing that each lattice site i of the substrate is associated with
an integer height variable hi. The interface evolves by depo-

sition and evaporation of particles restricted by two con-
straints. On the one hand the interface obeys the so-called
restricted solid-on-solid �RSOS� condition that the heights of
neighboring lattice sites i , j may differ by at most one unit:

�hi − hj� � 1. �5�

This constraint was first introduced in �16� and imposes an
effective surface tension. On the other hand, the chemically
inert substrate is modeled as a hard-core wall by imposing
the dynamical constraint

hi 	 0. �6�

The model evolves by random-sequential dynamics, i.e., a
site of the lattice is randomly selected and one of the follow-
ing processes is carried out, provided that it does not violate
the constraints �5� and �6�: �i� deposition on the substrate at
rate q0, �ii� deposition on top of islands at rate q, �iii� evapo-
ration from the middle of plateaus at rate p, or �iv� evapora-
tion at the edges of plateaus at rate r.

If the resulting configuration were to violate the con-
straints �5� or �6� the attempted move is rejected. As usual,
the time scale is fixed by choosing one of the rates, e.g., r
=1. For p�1 the process defined above can be shown to
violate detailed balance in the stationary state, while for p
=1 and q
1 the stationary state is given by a Boltzmann-
Gibbs distribution.

The wetting transition in this model can be understood as
follows. Far away from the wall a free interface propagates
with a certain average velocity d

dt 	h
=v�q , p� which depends
on the growth rate q. Varying the growth rate this velocity
changes sign at a well-defined threshold qc�p�. For v�q , p�

0 the interface moves backwards until it reaches the sub-
strate where it continues to fluctuate in a stationary bound
state, while for v�q , p��0 the interface detaches from the
bottom layer.

B. Two-species model

In the present work we generalize the model introduced in
�6� as to describe deposition and evaporation of two different
types of particles, labeled by A and B. Both species of par-
ticles are completely symmetric and obey the same dynamic
rules as in the original model. In addition we require that the
two species repel each other, implemented by the dynamical
constraint that particles of different types are forbidden to be
in contact with each other. For example, a particle of type A
must not be deposited on top of a B and vice versa. Similarly,
particles of different types cannot be deposited at adjacent
sites �see Fig. 2�. Starting with a flat interface at zero height,
these dynamical rules ensure that at each lattice site the wet-
ting layer consists of only one type of particles, leading to
homogeneous droplets, consisting either of A or B particles.
Note that this model is completely symmetric under an inter-
change A↔B, establishing a global Z2 symmetry.

The present study is restricted to the case p=1, where
stationary bound states obey detailed balance so that meth-
ods from equilibrium statistical mechanics can be applied. A
full analysis of the genuine nonequilibrium case p�1 will be
presented elsewhere.
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As sketched in Fig. 3, the generalized model can be
implemented numerically in a very elegant way by represent-
ing a wetting layer of type A by positive and a layer of type
B by negative heights. As before, hi=0 stands for an unoc-
cupied site where the substrate is exposed to the gas phase.
Compliance with the additional rule that particles of different
types may not be in contact with each other is then consis-
tently ensured by extending the RSOS constraint �5� to nega-
tive heights. Using this representation, the generalized model
can be simulated by carrying out the following local update
rule:

1. A site i is chosen at random.
2. A deposition or evaporation process is selected accord-

ing to the probabilities listed in Table I.
3. The attempted update is rejected if the resulting con-

figuration violates the restricted solid-on-solid condition �5�;
otherwise it is carried out.

4. The time variable is incremented by �t= 1
nN , where n

=max�r+q ,2q0�.
The successive execution of N local updates is referred to

as one Monte Carlo step �MCS�. As before, the overall time
scale can be fixed by choosing one of the rates, e.g., by
setting r=1.

The representation of A and B layers by positive and
negative heights is not only technically useful. As we will
see below, it is also instructive in analytical considerations,
as it allows one to relate the two-species model to the origi-
nal single-species model.

In what follows we are primarily interested in the physi-
cally relevant case of a two-dimensional substrate because
this is the lowest dimension where the competition of the
two particle species leads to an additional phase transition in
the pinned region. In all numerical simulations we use peri-
odic boundary conditions in order to minimize finite size
effects.

III. PHASE DIAGRAM

To describe and analyze the model, we mainly consider
three different order parameters. The first quantity is the oc-
cupation balance, defined by

b =
1

N
�
i=1

N

hi. �7�

Since particles of type A are represented by positive and
particles of type B by negative occupation numbers hi, the
occupation balance is a measure of the surplus of one type of
particles and thus indicates a broken A↔B symmetry.

The second quantity is the density of unoccupied sites,

��0� =
N�0�

N
=

1

N
�
i=1

N

�hi,0
. �8�

This parameter indicates how strongly the interface is pinned
to the bottom layer. In particular, for large deposition rates,
where the surface is covered by competing islands which are
separated by lines of unoccupied sites, this order parameter is
a measure of the length of the perimeter of the islands and
thus allows us to draw conclusions about their size and the
roughness of their borders.

Finally, we are also interested in the interface width

w = 1

N
�

i

�hi�2 − � 1

N
�

i

�hi��2

�9�

which quantifies the roughness of the interface. These order
parameters allow one to identify the following phases �see
Fig. 4�:

�A� Symmetric phase: For q
1 and small values of q0 the
interface fluctuates close to the wall, forming small short-

A A A A

A

B B B

B

B B

h

FIG. 3. �Color online� Numerical implementation: Droplets con-
sisting of A and B particles are represented by positive and negative
heights, respectively.
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FIG. 2. �Color online� Dynamics of the two-species model. Par-
ticles are deposited on the substrate at rate q0 �a� and on islands of
the same type at rate q ��b� and �g��. Moreover, they evaporate from
the edges of terraces at rate r �c� and from the middle of plateaus at
rate p �h�. Particles of different types are not allowed to touch each
other ��d�–�f��.

TABLE I. List of the probabilities for deposition and evapora-
tion in a local update, normalized by n=max�r+q ,2q0�.

Process hi=0 hi�0 hi
0

Deposition of A: hi→hi+1 q0 /n q /n 0

Deposition of B: hi→hi−1 q0 /n 0 q /n

Evaporation: hi→hi−sgn�hi� 0 r /n r /n
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FIG. 4. �Color online� Phase diagram of the two-species model
for p=1 in 2+1 dimensions, comprising a symmetric phase �A�, a
symmetry-broken phase �B�, and a rough phase �C /C��.
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lived islands of either type. The average occupation balance
is zero and the width of the interface saturates at a finite
value.

�B� Symmetry-broken phase: For large values of q0 and
q
1 one observes coarsening patterns of competing islands.
The islands have a pancakelike shape and the interface width
stays finite. Finite systems have two metastable states, that
each feature a surplus of one of the particle types and be-
come stable in the thermodynamic limit. The model has a
stationary symmetry-broken state with a nonzero occupation
balance. This phase does not exist in 1+1 dimensions.

�C,C�� Rough phase: As free parts of the interface tend to
grow for q�1, this phase is characterized by the competition
of islands of the two particle types. As these islands coarsen,
one observes a monotonic increase of the average interface
width. This coarsening process turns out to be extremely
slow.

In finite systems a state with only one type of particles is
reached after a characteristic time scale. In the limit of large
systems this time scale almost certainly grows exponentially
or superexponentially with the system size. After the expul-
sion of one of the particle types the interface detaches from
the bottom layer, entering a moving nonstationary state. Note
that this behavior differs significantly from the one of the
single-species model, where the interface detaches immedi-
ately.

The phases �A� and �B� are separated by a phase transition
at a well-defined critical threshold. This raises the question
whether this line extends to the upper part of the phase dia-
gram, separating the rough phase into two parts, �C� and
�C��. As will be discussed below, these regions are quite
different in character. However, we were not able to locate a
transition line between �C� and �C�� in a robust and repro-
ducible way. Therefore we believe that the apparent phase
boundary for q�1 is a precursor of the �A�-�B� transition
rather than a line of genuine phase transition.

IV. CLASSIFICATION OF THE PHASES BY MEANS OF
THE BINDER CUMULANT

In phase �B� one observes coarsening and pancakelike
islands which compete one another. Finite systems have two
metastable states, which are each dominated by one of the
particle types. This leads to a spontaneous breaking of the
A↔B symmetry, in a similar way as in ferromagnets. In
finite systems the symmetry-broken state is only metastable
against fluctuations. Therefore one observes occasional flips
from an A-dominated to a B-dominated state and back. Fig-
ure 5 shows a sequence of six snapshots of such a flip ex-
tending over 4000 Monte Carlo updates. As can be seen, a
flip occurs whenever minority islands generated by fluctua-

tions reach a critical size that suffices to displace the majority
type.

The repeated flipping in finite systems can be observed by
monitoring the occupation balance b. A typical plot of the
behavior in this phase is shown in Fig. 6. As can be seen, the
occupation balance b fluctuates around one of two values
b* which characterize the two metastable states. This be-
havior is intermitted by flipping processes from one of the
states to the other. As shown in Fig. 7 the average time
between two flipping processes Tf grows exponentially with
the system size. Thus in the limit L→� the model has two
thermodynamically stable ground states that spontaneously
break the symmetry under interchange of the two particle
types.

Figure 6 reveals another interesting fact: Obviously, the
flipping is weakly correlated with a transient increase of the
density of unoccupied sites. To understand this increase
qualitatively let us again consider the snapshots shown in
Fig. 5. While the system is in one of the metastable states the
number of unoccupied sites is correlated with the number
and the size of the minority islands, as most unoccupied sites
are arranged along their perimeter. However, during the flip-
ping the system is dominated by two big islands, one of each
particle type, that are separated by a fissured, but preferen-
tially straight, domain wall, along which the unoccupied sites
are located. For this, the number of exposed sites �gray pix-
els� is maximal during the flipping process �see Fig. 5�.

The two phases are associated with different characteristic
probability distributions of the occupation balance. In the
symmetric phase �A� a finite system exhibits a Gaussian dis-
tribution centered around zero, while in the symmetry-
broken phase �B� the distribution shows two peaks localized
at b*. This qualitative difference can be studied by mea-
suring the Binder cumulant �17�

U = 1 −
1

3

	b4

	b2
2 . �10�

In the symmetric phase, where b is normally distributed, the
cumulant vanishes. In the symmetry-broken phase, where the
occupation balance fluctuates only slightly around b*, the
Binder cumulant should tend to the value

U � 1 −
1

3

�b*�4

��b*�2�2 =
2

3
. �11�

Interestingly the Binder cumulant can also be used to iden-
tify regions in which the interface is propagating at a con-
stant velocity v. Such regions can be expected to exist in the
region q�1. In this case bt� vt, such that one finds

FIG. 5. �Color online� Six snapshots of a 50�50 Lattice during a flipping process with q0=1.17 and q=0.82 from a state dominated by
red �bright� to a state dominated by blue �dark� particles. The brightness indicates the height, white stands for unoccupied sites.
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U � 1 −
1

3

1/T�
0

T

�vt�4dt

�1/T�
0

T

�vt�2dt�2 =
2

5
. �12�

As demonstrated in Fig. 8 these values are nicely repro-
duced in numerical simulations and can be used to distin-
guish between the phases �A� and �B�. For q�1, the inter-
face of a finite system detaches from the bottom layer after a
characteristic time Td. In region �C� this time is much smaller
than the simulation time such that the Binder cumulant takes
the value from Eq. �12�. In region �C��, however, the cumu-
lant remains close to zero. Note that this sudden change in
the Binder cumulant between �C� and �C�� does not neces-
sarily mean that a phase transition takes place, rather it sim-
ply indicates that the coarsening process in region �C�� is so
slow that the actual simulation time does not suffice to ob-
serve the detachment of the interface.

V. STATIONARY EQUILIBRIUM STATE

A. Detailed balance

For p=1 and q
1 the model is in the bound phase and
evolves towards a fluctuating stationary state. As will be

shown below, this stationary state obeys detailed balance so
that methods of equilibrium statistical mechanics can be ap-
plied. More specifically, it turns out that the stationary state
is characterized by a canonical distribution, i.e., the probabil-
ity of finding an interface configuration �hi�i=1

N which is con-
sistent with the RSOS condition �5� is given by

P��hi�i=1
N � =

1

ZN
exp�− H��hi�i=1

N �� . �13�

Here H��hi�i=1
N � is an energy functional and

ZN = �
�hi�i=1

N

exp�− H��hi�i=1
N �� �14�

is the partition sum over all configurations �hi�i=1
N obeying the

RSOS constraint. The energy functional is of the form

H��hi�i=1
N � = �

i=1

N

V�hi� �15�

meaning that it associates with every height value hi a po-
tential energy V�hi� that depends on the rates q0 and q. Fol-
lowing �7� this potential is given by

V�h� = �− ln�q/q0� h = 0

− �h�ln�q� h � 0
� . �16�

Note that this potential is symmetric under the change of
sign h→−h, reflecting the A↔B symmetry. Inserting Eqs.
�15� and �16� into Eq. �13� yields the distribution

P��hi�i=1
N � =

1

ZN
q��i=1

N �hi���q/q0���i=1
N �hi,0

�. �17�

Following �7� one can easily show that the distribution �17�
is in fact stationary and obeys detailed balance. According to
Table I the deposition of a particle on the substrate or on top
of an island changes the probability of a configuration by a
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FIG. 6. �Color online� Occupation balance b and density of
unoccupied sites ��0� in a system with 50�50 sites for q0=1.17 and
q=0.82. Every data point was averaged over 100 MCSs. The sys-
tem flips between two metastable states. Obviously the flipping is
correlated with a small increase of the density of unoccupied sites.
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FIG. 7. �Color online� The characteristic time interval Tf be-
tween two flipping processes depends exponentially on the system
length L. The two metastable states of the symmetry-breaking phase
become stable in the thermodynamic limit. In 2+1 dimensions the
two-species model exhibits spontaneous symmetry breaking.
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FIG. 8. �Color online� Binder cumulant U as a function of the
parameters q and q0 in a 2+1-dimensional system with N=502 sites
averaged over T=2�105 MCSs after an equally long relaxation
time. The same data are shown as a density plot in the background
of Fig. 4. Orange �A� corresponds to the symmetric phase, violet
�B� to the symmetry-broken phase, and blue �C and C�� to the
growing phase.
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factor of q0 or q, respectively. Likewise evaporation contrib-
utes a factor 1 /q0 or 1 /q. As the rates for deposition are q0
and q and the rate for evaporation is 1, this state obeys de-
tailed balance and is therefore stationary provided that q

1.

B. Origin of the phase transition

Regarding Eq. �17� the existence of a phase transition
seems to be surprising as there is no explicit interaction, not
even a short ranged one, between the sites of the lattice. In
fact, the only mechanism that leads to correlations between
the sites and therewith to a phase transition in this model is
the RSOS constraint.

To understand this mechanism, it is instructive to consider
the simple case q=0, where the dynamics is restricted to a
single monolayer, i.e., hi� �0, 1�. In this case the potential
�16� is given by

V�h� = �0 h = 0

− ln�q0� h � 0
� �18�

and the probability for finding a configuration with hi
� �0, 1� that is consistent with the RSOS constraint �5�
reads

P��hi�i=1
N � =

1

ZN
q0

��i=1
N �hi�� =

1

ZN
q0

N�+�+N�−�
=

1

ZN
q0

N−N�0�
. �19�

Here N�� denotes the total number of sites with hi= 1, so
that N=N�+�+N�−�+N�0�. The occupation balance is then
given by b= 1

N �N�+�−N�−��. Obviously, for small q0 the sys-
tem prefers sparsely occupied configurations whereas for
large q0 configurations with a high density of islands become
more likely. As the probability for a specific configuration
depends only on the number of occupied states N�+�+N�−� the
behavior of the system is determined by the number of pos-
sible configurations m�N�+� ,N�−�� for given particle numbers
N�+� and N�−�. This multiplicity of states plays a key role for
the phase transition between phases �A� and �B�.

Without the RSOS constraint the multiplicity would, re-
gardless of the dimensionality of the lattice, just be given by

m�N�+�,N�−�� =
N!

N�+�!N�−�!N�0�!
. �20�

Therefore, without the RSOS condition, the most probable
configurations would be characterized by N�+��N�−�, irre-
spective of the value of q0.

The influence of the RSOS constraint on the multiplicities
m�N�+� ,N�−�� depends strongly on the dimensionality of the
lattice. This is demonstrated in Fig. 9, where the multiplici-
ties for systems with N=25 sites are compared for the unre-
stricted and the restricted case in 1+1 and 2+1 dimensions.
As can be seen, the RSOS condition reduces the area where
m is nonzero since islands of different types have to be sepa-
rated by unoccupied sites at zero height. On the other hand,
in 2+1 dimensions the influence of the RSOS constraint is so
strong that the maxima are shifted away from the diagonal to
the edges of the diagram. Therefore if q0 is larger than some
critical value q0

C, the system is preferentially driven into one

of these configurations at the edges, explaining why the sys-
tem prefers a symmetry-broken state. Figure 9 also demon-
strates why the symmetry breaking is not observed in 1+1
dimensions, where the influence of the RSOS constraint is
apparently not strong enough to shift the maxima of the mul-
tiplicities to the edges.

For q
1 higher layers become accessible but they are
occupied only rarely so that the islands retain their pancake-
like shape. Therefore the situation can be expected to be
qualitatively similar. Nevertheless, particles in higher layers
tend to stabilize the particles in the layers below, increasing
the effective growth rate. Therefore the critical value q0

C

should decreases with increasing q. As can be seen in the
phase diagram �Fig. 4�, this is indeed what the numerical
simulations show.

VI. CRITICAL PROPERTIES

In this section we study the dynamical critical behavior
along the transition line between the phases �A� and �B� and
at its upper terminal point. Here the two order parameters
defined above require a separate treatment with different ini-
tial conditions. For the occupation balance bt one has to start
with a monolayer of only one species of particles, say A
particles so that b0=1. With this initial condition the occu-
pation balance bt is expected to decay at criticality as

bt � t−�. �21�

On the other hand, the density of exposed sites �t
�0� requires

to start with a flat interface so that �0
�0�=1. At criticality this

quantity is expected to decay as

�t
�0� − ��

�0� � t−� �22�

while the occupation balance vanishes for all t.
Moving away from the critical line into the symmetry-

broken phase �B� the occupation balance becomes nonzero
and flips between the values b*. One can therefore use

b* = b*�q0,q� = 	�b�
 , �23�

as a magnetizationlike order parameter to characterize the
transition between the two phases. Suppressing flips by
choosing sufficiently large system sizes and varying q0 while
keeping q
1 fixed b* is found to increase as

b*�q0,q� � �q0 − q0
c�q���. �24�
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FIG. 9. �Color online� Multiplicity of states for all possible val-
ues of N�+� and N�−� of systems with 25 sites. Light gray stands for
multiplicity zero.
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By seeking for power laws and by measuring the order
parameter b* we first determined various critical points q0

c

which are listed in Table II.

A. Transition for q=0

Measuring the dynamic critical exponents � and � at the
lower end of the transition line q0=q0

c�0�, q=0 we find

� = 0.058�4� and � = 0.5�1� . �25�

The density of exposed sites relaxes vs the value ��
�0�

=0.384�5�. Moving into the ordered phase �B� with q=0
fixed the magnetizationlike order parameter b* obeys Eq.
�24� with a critical exponent of

� = 0.125�5� . �26�

This suggests that at this point the transitions belongs to
the universality class of the two-dimensional kinetic Ising
model with heat bath dynamics, which is characterized by
the exponents �=1 /8, z�2.125, and �=� /z�0.0588 �19�.
The ordered phase of the kinetic Ising model is known to be
characterized by coarsening domains with an average size
growing as t1/2 �18�. One would therefore expect that the
density of exposed sites �t

�0�, which in the present case is a
measure of the density of domain walls, decays as t−1/2,
which is consistent with our results.

This result seems to be reasonable, as at q=0, where the
height values are restricted to hi� �0, 1�, our model is very
similar to a kinetic Ising model. The behavior is governed by
the competition of bulk noise, caused by evaporation and
deposition, and the ordering influence of the RSOS con-
straint. The rate q0 acts as an effective inverse temperature.
Similar behavior was observed in other binary mixture mod-
els on two-dimensional lattices �15�.

B. Transition line for 0
q
1

For 0
q
1 the coarsening islands retain a pancakelike
shape since higher layers are exponentially suppressed, as
can be seen from the stationary equilibrium distribution �17�.
This means that the third dimension �height� is switched off
so that the resulting process is still effectively two-
dimensional. One might therefore expect that the transitions
along the entire line between the phases �A� and �B�, except
for the upper terminal point, belong to the universality class
of the two-dimensional kinetic Ising model.

Our simulations suggest that this is not the case, but rather
that all three exponents vary continuously when q is in-

creased. The determination of critical exponents is always a
delicate issue, especially when, as in the case of � and �, the
power laws contain additional unknown quantities. Being
skeptical of these results we have carefully estimated the
error bars. The results of our analysis are shown in Table II.

The critical points listed in Table II were estimated in two
ways: first by searching for a power law decay of the form
�21� while varying q0 for fixed values of q; second by fitting
a power law of the form �24� to data obtained by stepwise
increasing q0 and measuring b* after sufficiently long relax-
ation times. Both methods yield consistent results near the
lower and upper end of the transition line. In the middle, i.e.,
around q�0.5, the q0

c�q� values obtained by the second
method are slightly smaller. We consider the first method to
be more reliable as it is less affected by finite size effects.

The exponent � can be determined with high accuracy
although its value is fairly small. It is the most reliable indi-
cator for a continuous variation of the exponents along the
transition line.

Concerning the exponent � the by far dominating source
of errors is the determination of the asymptotic value of the
density of exposed sites, which seems to take the value ��

�0�

=0.38�1� along the entire transition line. Although we see a
systematic dependency of the exponent � on the rate q this
dependency is not significant.

The most problematic exponent is �. First, the uncertainty
in the position of the phase boundary q0

C�q� limits the reach-
able accuracy. In addition, when q is increased the correla-
tion length in phase �B� grows, increasing the influence of
finite size effects. The feasible system sizes are in turn lim-
ited by the necessity for very long relaxation times. In order
to handle both types of errors we performed additional con-
trol simulations with stepwise decreased deposition rate q0
and simulations with different system sizes L�100. The re-
sults of our finite size simulations are shown in Figs. 10 and
11. The estimated exponent decreases with increasing system
sizes, but seem to converge vs a value that is noticeably
higher that 1 /8 for q�0 in the limit L→�.

C. Nonequilibrium phase q�1

For q�1 the model has no stationary state and therefore
becomes sensitive to the initial conditions. For example, if
the substrate is initially covered with several layers of par-
ticles of one type, particles of the other type are unable to
attach so that the interface grows at constant velocity, just as
in the single-species case. However, starting with a flat inter-

TABLE II. Numerical values for the critical points along the phase boundary q0
c�q� between the unordered

phase �A� and the symmetry-broken phase �B� and various critical exponents �, �, and � along that line
obtained from simulations of systems with 100�100 sites.

q 0 0.2� 0.4 0.6 0.8 1

q0
c�q� 2.062�5� 1.787�5� 1.560�5� 1.360�5� 1.181�5� 1

� 0.5�1� 0.5�2� 0.5�2� 0.6�2� 0.6�2�
� 0.058�5� 0.063�5� 0.068�5� 0.074�5� 0.098�5�
� 0.125�5� 0.14�1� 0.16�2� 0.19�3� 0.21�3�
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face at zero height, the situation is totally different. Here one
observes a slow coarsening of competing three-dimensional
islands of particles of both types.

As for q�1 the deposition rate is higher than the evapo-
ration rate islands of both types tend to grow. The RSOS
constraint, however, does not allow slopes greater than one
and requires a line of unoccupied sites in between islands of
different types. The islands therefore have a pyramidal
shape. There is a surface-tension like effect, that makes large
islands grow at the expense of small ones, but the coarsening
in this phase is extremely slow. This is due to the fact that the
borders of the islands are almost completely immobilized, as
the particles in the bottom layer can evaporate only, if be-
forehand all the particles along the slope of the pyramidal
island have evaporated.

To quantify the slowdown of the dynamics we performed
finite-size simulations with periodic boundary conditions. In
these simulations, because of the finite system size, the
coarsening process eventually displaces one of the particle
types, allowing the interface to detach from the bottom layer
and to propagate at constant velocity. As shown in Fig. 12,
the mean detachment time Td depends on the rates q0 and q
and the system size L. The results suggest that the detach-
ment time Td grows exponentially with the system size L, or
even faster.

Moreover, the simulations confirm the existence of two
different regions �C� and �C�� in Fig. 8 for q�1, as already
observed when measuring the Binder cumulant. In region �C�

the formation of islands and the coarsening process start im-
mediately, while in region �C�� one observes a low density of
small short-lived islands for a long time until one or several
large islands, that were generated by fluctuations, begin to
grow.

The different phenomenological properties in these re-
gions can be explained as follows. For q�1 the clusters
grow by an influx of particles proportional to their area. If
q0
1, however, there is also a competing process: the ten-
dency of particles to evaporate from the bottom layer. As
such particles are preferentially located at the border of is-
land the strength of this effect is proportional to the perim-
eter of an island. If q0 is small enough the balance of these
two processes defines a critical droplet size from where on
islands start to grow. Although the regions �C� and �C�� seem
to be well separated, we do not see evidence for a phase
transition.

For small system sizes L the qualitative different behavior
in these two regions even leads to quantitative influence on
the detach time �see Fig. 12�. For high values of q0, i.e., in
region �C�, the asymptotically exponential increase of the
detachment time sets in already for small L. For small q0 in
region �C�� the curves increase much faster for small L, lead-
ing to detachment times that are several orders of magnitude
larger. Surprisingly the curves reach a local maximum fol-
lowed by a decline and an eventual crossover to the
asymptotic exponential increase.

This behavior may be explained as follows: If the system
size is smaller than the critical droplet size even subcritical
droplets can make the interface detach due to the periodic
boundary conditions. The local maximum is reached when
the critical droplet size approximately equals the system size.
Increasing the system size further, the probability to generate
a critical droplet grows, thereby reducing the detachment
time. Here the dynamics is still governed by a single droplet
which exceeds the critical size and then grows rapidly until
the interface detaches. In much larger systems, however, it is
likely that two or more supercritical droplets of different
types are created before the first can spread out over the
whole substrate. Then the limiting effect is the competition
between the pyramidal islands which explains the asymptotic
exponential increase.

D. Line q=1

Let us first consider the upper terminal point of the phase
transition line located at q0=q=1. Using again the mapping
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of the model to a growth process with positive and negative
heights �see Fig. 3� it is easy to see that in this case the
potential �16� is translationally invariant in the heights so
that the dynamics of the model is equivalent to a freely
evolving RSOS interface with average velocity zero without
the hardcore wall at h=0. At this point the surface does no
more approach an equilibrium configuration, but rather it
continues to roughen with a width increasing as t. In fact,
the density of unoccupied sites, that in this case is equivalent
to the density of the roughening RSOS interface cut horizon-
tally in the middle, decays like

	��0�
 � t−0.50�1�. �27�

Moreover, in a finite system starting at zero height the occu-
pation balance is found to perform a random walk, hence

	�b�
 = b* � t0.500�5� for �d = 2,q = q0 = 1� . �28�

For q0�1 translational invariance in the heights is broken by
a repulsive potential well at zero height. In the special case
q=1 and q0→� starting with a monolayer of one type of
particles, particles of the other type are unable to attach. The
bottom layer acts as an effective inert substrate on which
particles of one type form clusters in the same way as they
do in the RSOS model. As time proceeds, the interface
roughens according to the Edwards-Wilkinson universality
class. Therefore the width is expected to increase as

w � t1/4. �29�

This is consistent with our numerical observation that

	�b� − sgn�b�
 � t0.25�3� for �d = 2,q = 1,q0 → �� .

�30�

For q0
1, on the other hand, one has an attractive poten-
tial barrier at zero height. When the line q=1 is approached
from above the tendency of islands to grow diminishes as q
decreases, and therefore the critical droplet size gets larger
and finally diverges as q=1 is approached. Starting with an
empty lattice the model behaves similar as in the unordered
phase �A�. Even if the system is started with a few monolay-
ers of particles fluctuations soon create holes in the deposit
that grow until the substrate is almost completely exposed
and the system again ends up in a situation that is similar to
the unordered phase.

VII. CONCLUSIONS

In the present work we have investigated how the phase
transition in a model for nonequilibrium wetting is affected
by introducing two competing adsorbates with identical
properties. In this generalized model we have assumed that
the two species of particles repel each other strongly. This
leads to the formation of mutually repelling droplets, each
consisting of only one type of particles.

In two dimensions we have identified an additional line of
second-order phase transitions in the bound phase �see Fig.
4�. It separates an ordered phase, where one of the two par-
ticle species takes over, from a disordered phase character-
ized by many small islands of different type. Defining appro-
priate order parameters and cumulants we have studied this
transition in detail by numerical simulations. The origin of
the phase transition can be explained in part by analyzing the
partition sum in those parts of the phase diagram where de-
tailed balance is valid.

In the limit q→0, where the wetting process is governed
by a monolayer, this transition exhibits the same critical
properties as the kinetic Ising model with heat bath dynam-
ics. This is reasonable since in this case this islands are flat
and their interior noise caused by evaporation and deposition
competes with ordering influence of surface tension at their
boundaries.

For 0
q
1 higher layers are involved as well, giving
the islands a three-dimensional shape. Nevertheless, their
thickness should remain finite and of the order −1 / ln�q� so
that one would expect them to behave asymptotically in the
same way as in the monolayer case, suggesting that the entire
curved line of transitions should belong to the Ising univer-
sality class. Contrarily, our numerical simulations seem to
give evidence for continuously varying exponents. The ques-
tion whether these varying exponents are genuine or caused
by crossover effects is still open. A summary of the critical
exponents can be found in Table II.

As in the single-species case, the model undergoes a tran-
sition from a bound to an unbound phase at the threshold q
=1 �the horizontal line in Fig. 4�. However, the critical prop-
erties for a system with an initially flat interface along this
line are found to be different. In particular, there is the spe-
cial point q=q0=1, at which the two transition lines meet. It
separates the line q=1 into two segments. For q0�1 the
wetting transition is continuous, while for q0
1 it is discon-
tinuous.

The unbound phase can be divided into two different re-
gimes of different coarsening with an approximate borderline
which seems to prolongate the curved transition line from the
bound phase. Nevertheless, we do not find evidence for a
sharp phase transition between these regimes. In both regions
the competition of two species slows down the dynamics.

The study presented here has been primarily of theoretical
interest and was motivated by the question how an additional
symmetry between competing adsorbates affects the critical
properties of a wetting transition. As soon a this symmetry is
broken one expects the process to cross over to an effective
single-species behavior after sufficiently long time. It would
be interesting to study the case p�1, where the process is
out of equilibrium even in the bound phase. In this case the
additional transition would still exist but probably it will no
longer belong to the Ising universality class in the limit of
small q.
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